Parallel and divergent adaptations of rat soleus and plantaris to chronic exercise and hypergravity.

نویسندگان

  • Patrick M Fuller
  • Kenneth M Baldwin
  • Charles A Fuller
چکیده

It has been demonstrated that endurance exercise and chronic acceleration, i.e., hypergravity, produce comparable adaptations in a variety of physiological systems, including decreased adiposity, increased energy metabolism, and altered intermediary metabolism. Similar adaptations have not been demonstrated for skeletal muscle per se. To further differentiate between these general responses with respect to gravity and exercise, this study tested the hypothesis that chronic exercise (voluntary wheel running) and chronic acceleration (2 G via centrifugation) will induce similar changes in muscle myosin heavy chain (MHC) isoform expression in rat plantaris, a fast extensor, and in rat soleus, a slow "antigravity" extensor. The experimental design involved four groups of mature male rats (n = 8/group): 1 G and 2 G with running wheels, and 1 G and 2 G controls without running wheels. The primary observations from the study were as follows: 1) 8 wk of 2 G are an adequate stimulus for MHC compositional changes in rat plantaris and soleus muscle; 2) both exercise and +G caused an increase in the slow MHC1 isoform in soleus muscle, suggesting that loading is a primary stimulus for this shift; and 3) 2 G and exercise appeared to have differential effects on the plantaris muscle MHC isoforms, with 2 G causing an increase in MHC2b, and exercise causing a decrease in MHC2b with a concomitant increase in MHC1, suggesting that factors other than enhanced loading, possibly locomotor activity levels, are the primary stimulus for this shift.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypergravity from conception to adult stage: effects on contractile properties and skeletal muscle phenotype.

This study examined the effects of an elevation of the gravity factor (hypergravity--2 g) on the molecular and functional characteristics of rat soleus and plantaris muscles. Long Evans rats were conceived, born and reared (CBR) continuously in hypergravity conditions until the age of 100 days. Whole muscle morphological parameters, Ca2+ activation characteristics from single skinned fibers, tr...

متن کامل

Contractile properties of rat single muscle fibers and myosin and troponin isoform expression after hypergravity.

The effects of 19 days of hypergravity (HG) were investigated on the biochemical and physiological properties of the slow soleus muscle and its fast agonist, the plantaris. HG was induced by rotational centrifugation that led to a 2-G gravity level. The HG rats were characterized by a slower body growth than control, whereas the soleus muscle mass was increased by 15%. Using electrophoretic tec...

متن کامل

Contractile properties and myosin expression in rats born and reared in hypergravity.

The effects of hypergravity (HG) on soleus and plantaris muscles were studied in Long Evans rats aged 100 days, born and reared in 2-g conditions (HG group). The morphological and contractile properties and the myosin heavy chain (MHC) content were examined in whole muscles and compared with terrestrial control (Cont) age-paired rats. The growth of HG rats was slowed compared with Cont rats. A ...

متن کامل

Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity.

A unique polygenic model of rat physical activity has been recently developed where rats were selected for the trait of low voluntary wheel running. We utilized this model to identify differences in soleus and plantaris muscles of sedentary low voluntary wheel running rats and physically active low voluntary wheel running rats exposed to moderate amounts of treadmill training. Three groups of 2...

متن کامل

Adaptations of motoneuron properties to chronic compensatory muscle overload.

The aim of the study was to determine whether chronic muscle overload has measurable effect on electrophysiological properties of motoneurons (MNs), and whether duration of this overload influences intensity of adaptations. The compensatory overload was induced in the rat medial gastrocnemius (MG) by bilateral tenotomy of its synergists (lateral gastrocnemius, soleus, and plantaris); as a resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 290 2  شماره 

صفحات  -

تاریخ انتشار 2006